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Abstract 

Human motion analysis is receiving increasing at- 
tention from computer vision researchers. This inter- 
est is motivated by a wide spectrum of applications, 
such as athletic performance analysis, surveillance, 
man-machine interfaces, content-based image storage 
and retrieval, and video conferencing. This paper gives 
an overview of the various tasks involved in motion 
analysis of the human body. We focus on three major 
areas related to interpreting human motion: 1) motion 
analysis involving human body parts, 2) tracking of 
human motion wing single or multiple cameras, and 
8) recognizing human activities from image sequences. 
Motion analysis of human body parts involves the low- 
level segmentation of the human body into segments 
connected by joints, and recovers the 3D structure of 
the human body using its 2 0  projections over a se- 
quence of images. Ilfacking human motion wing a 
single or multiple cameras focuses on higher-level pro- 
cessing, in which moving humans are tracked without 
identifying specific parts of the body structure. After 
successfully matching the moving human image )?om 
one frame to  another in image sequences, understand- 
ing the human movements or activities comes natu- 
rally, which leads to our discussion of recognizing hu- 
man activities. The review is illustrated by ezamples. 

1 Introduction 

Human motion analysis is receiving increasing at- 
tention from computer vision researchers. This inter- 
est is motivated by applications over a wide spectrum 
of topics. For example, segmenting the parts of the 
human body in an image, tracking the movement of 
joints over an image sequence, and recovering the un- 
derlying 3D body structure is particularly useful for 
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analysis of athletic performance as well as medical di- 
agnostice. The capability to  automatically monitor 
human activities using computers in security-sensitive 
areas such as airports, borders, and building lobbies is 
of great interest to the police and military. With the 
development of digital libraries, the ability to auto- 
matically interpret video sequences will save tremen- 
dous human effort in sorting and retrieving images or 
video sequences using content-based queries. Other 
applications include building man-machine user inter- 
faces, video conferencing, etc. This paper gives an 
overview of recent approaches to  the various levels of 
tasks needed to accomplish the analysis of human mo- 
tion from image sequences. 

In contrast to our previous review of motion esti- 
mation of a rigid body [3], this survey concentrates on 
motion analysis of the human body, which is a non- 
rigid form. Our discussion covers three areas: 1) mo- 
tion analysis of the human body structure, 2) tracking 
of human motion using a single or multiple cameras. 
and 3) recognizing human activities from image se- 
quences. The relationship among these three areas is 
depicted in Figure 1. Our review follows a bottom- 
up approach in describing the general tasks for each 
area. Motion analysis of the human body usually in- 
volves the extraction of the low-level feature, such as 
body part segmentation , joint detection and identifi- 
cation, and the recovery of 3D structure from the 2D 
projections in an image sequence. Tracking moving 
individuals using a single or multiple cameras involves 
applying visual features to detect the presence of hu- 
mans directly, i.e., without considering the geomet- 
ric structure of the body parts. Motion information, 
such a~ position and velocity incorporated with inten- 
sity values, is employed to establish matching between 
consecutive frames. After feature correspondence be- 
tween successive frames is solved, the next step is to 
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Figure 1: Relationship among the three areas of human motion analysis addressed in the paper. 

understand the behavior of these features throughout 
the image sequence. Therefore, our discussion turns 
to a review of methods for recognition of human move- 
ments and activities. 

There are two typical approaches to the motion 
analysis of human body parts, depending on whether a 
priori shape models are used. Figure 2 lists a number 
of the publications in this area over the past several 
years. The work denoted with an asterisk was de- 
veloped in the Computer and Vision Research Center 
at The University of Texas at Austin. In each type 
of approach, the representation of the human body 
evolves from stick figurea to 2D contours to 3D vol- 
umes as the complexity of the model increases. The 
stick figure representation is based on the observation 
that human motion is essentially the movement of the 
supporting bones. The use of 2D contours to repre 
sent the human body is directly associated with the 
projection of the human figure in images. Volumetric 
models, such as generalized cones, elliptical cylinders, 
and spheres, attempt to describe the details of a hu- 
man body in 3D and thus require more parameters for 
computation. 

With regard to  the tracking of human motion with- 
out the use of body parts, we differentiate the work 
based on whether the subject is imaged at one time in- 
stant by a single camera or from multiple perspectives 
using different cameras. In both configurations, the 
features to be tracked vary from points to 2D blobs to 
3D volumes. There is always a tradeoff between fea- 

ture complexity and tracking efficiency. Lower-level 
features, such as points, are easier to extract but rela- 
tively more difficult to track than higher-level features 
such a8 blobs and 3D volumes. Most of the work in 
this area is listed in Figure 3. 

To recognize human activities from an image se- 
quence, researchers typically use one of two types of 
approaches: approaches based on a statespace model 
or ones which use a template matching technique. In 
the first case, the features used for recognition have 
been points, lines, and 2D blobs. Methods using tem- 
plate matching usually apply meshes of a subject im- 
age to identify a particular movement. Figure 4 gives 
an overview of past research in this area. In some of 
the publications, recognition is conducted using only 
parts of the human images. Since these methods can 
be naturally extended to recognition of a whole body 
movement, we also include them in our discussion. 

The organization of the paper is as follows: Section 
2 reviews work on motion analysis of the human body 
structure. Section 3 covers the research on the higher- 
level tasks of tracking human motion without identi- 
fying the human body parts. Section 4 extends the 
discussion to recognition of human activity in image 
sequences based upon successfully tracking the fea- 
tures between consecutive frames. Finally, section 5 
concludes the paper by giving general comments on 
previous work in the area of human motion analysis 
and discusses possible future directions of research in 
this area. 
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Figure 2: Past research on motion analysis of human body parts. 
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Figure 3 Past research on tracking of human motion without using body parts. 

Human Activity Recognition 
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Figure 4: Past work on human activity recognition. 
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Figure 5: A stick-figure human model (based on Chen 
and Lee% work [ll]). 

Figure 6: A 2D contour human model (similar to L e  
ung and yang,s model [261). 2 Motion Analysis of Human Body 

Parts 

This section focuses on motion analysis of human 
body parts, i.e., approaches which involve 2D or 3D 
analysis of the human body structure through image 
sequences. Conventionally, human bodies are repre- 
sented as stick figures, 2D contours, or volumetric 
models [l]. Thus, body segments cm be approximated 
as lines, 2D ribbons, and elliptical cylinders, accord- 
ingly. Figures 5 ,  6, and and 7 show examples of the 
stick figure, 2D contour, and volumetric representa- 
tions of the human body, respectively. In our later 
discussion, human body motion is addressed by the 
movement of the limbs and hands [50, 28,6,33], such 
as the velocities of the hand or limb segments, or the 
angular velocity of various body parts. 

Two general strategies are used, depending upon 
whether information about the object shape is em- 
ployed in the motion analysis, namely, model-based 
approaches and methods which do not use a priori 
shape models. Both methodologies follow the gen- 
eral framework of: 1) feature extraction, 2) feature 
correspondence, and 3) high-level processing. The 
major difference between the two methodologies is in 
the process of establishing feature correspondence be- 
tween consecutive frames. Methods assume 
priori shape models match the 2D image sequences 
to  the model data. Feature correspondence is auto- 

and the model data is established. When no a priori 
shape models are available, however, correspondence 
between successive frames is based upon prediction 

Figure 7: A volumetric human model (derived from 
Hoggls work [l51)* 

matically achieved once matching between the i m a p  
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or estimation of features related to  position, velocity, 
shape, texture, and color. These two methodologies 
can also be combined to complete processing at var- 
ious levels, verify the matching between consecutive 
frames, and finally, accomplish complex, high-level 
tasks. Since we have addressed a certain amount of 
work in this area in [l], we will focus on the discus- 
sion of the very recent developments in this area, and 
describe others brietly. 

2.1 Motion Analysis without a priori 
Shape Models 

Most approaches for 2D or 3D interpretation of hu- 
man body structure focus on motion estimation of the 
joints of body segments between consecutive frames. 
When no a pn'ori shape models are assumed, heuris- 
tic assumptions are usually imposed to establish the 
correspondence of joints in an image sequence. These 
assumptions define the constraints on feature corre- 
spondence, decrease the search space, and, eventually, 
result in a unique match. 

The simplest representation of a human body is 
the stick figure, which consists of line segments linked 
by joints. The motion of joints provides the key to 
motion estimation and recognition of the whole fig- 
ure. This concept was initially considered by Johans- 
son [23], who marked joints as moving light displays 
(MLD). Along this vein, Rashid [39] attempted to 
recover a connected human structure with projected 
MLD by assuming that points belonging to the same 
object have higher correlations in projected positions 
and velocities. Later, Webb and Aggarwal [47,48] re- 
covered the 3D structures of Johansson-type figures in 
motion. Their algorithm was based on the f i e d  
assumption, which assumes that each rigid object (or 
parts of an articulated object) motion is constrained 
so that its axis of rotation remains fixed in direction. 
Therefore, the depth of the joints can be estimated 
from their 2D projections. Niyogi and Adelson [33], 
however, pursued another route to estimate the joint 
motion of human body segments. They first examined 
the spatial-temporal (XYT) braided pattern produced 
by the lower limb trajectories of a walking human and 
conducted gait analysis for coarse human recognition. 
Then the projection of head movements in the spatial- 
temporal domain was located, followed by the identi- 
fication of other joint trajectories. These joint tra- 
jectories were then utilized to outline the contour of 

human body is spatially contiguous. Finally, a more 
accurate gait analysis waa performed using the out- 
lined 2D contour, which led to a finelevel recognition 

a walking human based on the observation that the 

of specific humans. Most of Bobick's studies [S, 111 
concentrated on the trajectories of the MLDs of joints. 
However, they obtained the 3D positions of the joints 
directly from range data, and thus avoided the p rob  
lem of feature correspondence. This strategy helped 
them to focus on higher-level processing, such as ac- 
tivity recognition and understanding, which will be 
reviewed in later sections. 

Another way to describe the human body is by us- 
ing 2D contours. Under such descriptions, the hu- 
man body segments are analogous to 2D ribbons or 
blobs. For example, Shio and Sklansky [45] focused 
their work on 2D translational motion of human blobs. 
The blobs were grouped based on the magnitude and 
direction of the pixel velocity, which was obtained us- 
ing techniques similar to the optical flow method [18]. 
The velocity of each part was considered to  converge 
to a global average value over several frames. This av- 
erage velocity corresponded to the motion of the whole 
human body. This observation led to identification of 
the whole subject via region grouping of blobs with 
a similar smoothed velocity. Kurakake and Nevatia 
[a] attempted to obtain the joint locations in images 
of walking humans by establishing correspondence be- 
tween extracted ribbons. Their work assumed small 
motion between two consecutive frames, and feature 
correspondence was conducted using various geomet- 
ric constraints. Joints were finally identified as the 
center of the area where two ribbons overlaps. Recent 
work by Kakadiaris et al. [26, 251 focused on body 
part decomposition and joint location from image se- 
quences of the moving subject using a physics-based 
framework. In this work, the subject image is assumed 
to be one blob. As the subject moves and new postures 
occur, multiple new blobs are produced to replace the 
old ones, with each of them representing an emerg- 
ing sub-part. Joints are determined based on relative 
motion and shape of two moving sub-parts. 

2.2 Model-based Approaches 

In the above subsection, we examined several ap- 
proaches to motion analysis that do not use a pr ior i  
shape models. Although this type of approach is nec- 
essary when no a priori  shape models are available, it 
is usually difficult to establish feature correspondence 
between consecutive frames. On the other hand, daily 
observation teaches us that the human eye usually in- 
terprets moving figures using a priori  shape models 

ods for the motion analysis of human body parts use 
models to fit to the given image, and, therefore, to ac- 
complish high-level tasks at the final stage. As men- 

learned from previous experience. Thus most meth- 
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tioned before, the models may be represented as stick 
figures, 2D contours, or volumetric models. We will 
discuss each of these below. 

Chen and Lee [12] recovered the 3D configuration 
of a moving subject according to its projected 2D im- 
age. Their model used 17 line segments and 14 joints 
to represent the features of the head, torso, hip, arms, 
and legs (shown in Figure 5). Various constraints were 
imposed for the basic analysis of the gait. The method 
was computationally expensive, as it searched through 
all possible combinations of 3D configurations, given 
the known 2D projection, and required accurate ex- 
traction of 2D stick figures. Bharatkumar et al. [SI 
also used stick figures to  model the lower limbs of the 
human body, where joints such as the hip, knee, and 
ankle were considered. They aimed at constructing 
a general model for gait analysis in human walking. 
Medial-axis transformations were applied to extract 
2D stick figures of the lower limbs. The body seg- 
ment angle and joint displacement were measured and 
smoothed from real image sequences, and then a com- 
mon kinematic pattern was detected for each walking 
cycle. A high correlation (> 0.95) was found between 
the subject in real image sequences and the model, 
showing that the kinematic model is a good measure 
for detecting walking humans. Huber’s human model 
[19] is a refined version of the stick figure representa- 
tion. Joints are connected by line segments with a cer- 
tain degree of constraint that can be relaxed by ”vir- 
tual springs”. Thus, this designed articulated kine- 
matic model behaves analogously to  a mass-spring- 
damper system. Motion and stereo measurements of 
joints are confined to  a three-dimensional space called 
Proximity Space (PS). The human head serves as the 
starting point for tracking all PS locations. In the 
end, particular gestures were recognized based on the 
PS states of the joints associated with the head, torso, 
and arms. 

Akita [4] focused on model-based motion analysis 
for real image sequences. Both stick figures and cone 
approximations were integrated and processed in a 
coarse-to-fine fashion. A key frame sequence of stick 
figures indicates the approximate order of the motion 
and spatial relationships between the body parts. The 
stick figure contains six segments: head, torso, arms, 
and legs. A cone model is included to provide knowl- 
edge of the rough shape of the body parts, which con- 
sists of six segments corresponding to the counterparts 

use of both stick figure and volumetric representations 
in their work 1361. They introduced a predefined li- 
brary with two levels of biomechanical graphical mod- 

of the stick figure model. Perales and Torres also made 

els. Level One is a stick figure tree with nodes for 
body segments and arcs for joints. Level Two is com- 
posed of descriptions of surface and body segments 
constructed with various 3D primitives used in com- 
puter graphics. Both levels of the model are applied 
in different matching stages. 

Leung and Yang [31] applied a 2D ribbon model 
to recognize poses of a human performing gymnastic 
movements. The emphasis of their work is to estimate 
motion solely from the outline of a moving human sub- 
ject. The system consists of two major processes: ex- 
traction of human outlines and interpretation of hu- 
man motion. The 2D ribbon model is comprised of 
two components, the “basic” body model and the “ex- 
tended” body model. The basic body model outlines 
the structural and shape relationships between the 
body parts, shown in Figure 6. The extended model 
consists of three patterns: the support posture model, 
the side view kneeling model, and side horse motion 
model. A modified edge detection technique was de- 
veloped based on the work in Jain and Nagel [21] to 
generate a complete outline of the moving object im- 
ages. A spatial-temporal relaxation proceas was prc- 
posed to determine which side of the moving edge be- 
longs to the moving object. Two sets of 2D ribbons on 
each side of the moving edge, either a part of the body 
or that of the background, are identified according to 
their shape changes over time. The body parts are 
labeled according to the human body model. Then, 
a description of the body parts and the appropriate 
body joints is obtained. 

Elliptical cylinders are one of the commonly used 
volumetric models for modeling human forms. Hogg 
[17] and Rohr [41] used the cylinder model originated 
by Marr and Nishihara [32], in which the human body 
is represented by 14 elliptical cylinders. Each cylinder 
is described by three parameters: the length of the 
axis and the major and minor axes of the ellipse cross 
section. The origin of the coordinate system is located 
at the center of the torso. Both Hogg and Rohr at- 
tempted to generate 3D descriptions of a human walk- 
ing by modeling. Hogg [17] presented a computer pro- 
gram (WALKER) which attempted to  recover the 3D 
structure of a walking person. Rohr applied eigenvec- 
tor line fitting to outline the human image, and then 
fitted the 2D projections into the 3D human model 
using a distance measure similar to Hogg [17]. 

O’Rourke and Badler [35] conducted 3D human mo- 

orate volumetric model. The model is a well-defined 
structure that consists of 24 rigid segments and 25 
joints. The surface of each segment is defined by a col- 

tion analysis by mapping the input images to an elab- 
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ledion of overlapping sphere primitives. A coordinate 
system is embedded in the segments. Their model 
also includes the constraints of human motion, such 
as restrictions on joint angles, and a method to d e  
tect collisions between non-adjacent segments. Along 
the same vein, Rehg et al. [40] rendered two occluded 
fingers with several cylinders, and the center axea of 
the cylinders are projected into the center line seg- 
ments of the 2D finger images. To track the motion 
of the self-occluded fingers, they assumed an invariant 
visibility order of 2D templatea of these two occluded 
fingers to the viewing camera. Three possible occlu- 
sions were considered. These assumptions simplified 
the motion prediction and matching process between 
the 3D shape model and its projection in the image 
plane. Recent work by Goncalves et al. [16] addressed 
the problem of motion estimation of a human arm in 
3D using a calibrated camera. Both the upper and 
lower arm were modeled as truncated circular cones, 
and the shoulder and elbow joints were assumed to 
be spherical joints. They used perspective projection 
of a 3D arm model to  fit the blurred image of a real 
arm. Matching was conducted by recursively mini- 
mizing the error between the model projection and 
the real image through dynamically adapting the size 
and orientation of the model. 

All of these approaches must match each real image 
frame to the corresponding model, which represents 
the human body structure at a abstract level. This 
procedure is itself non-trivial. The complexity of the 
matching process is governed by the number of model 
parameters and the efficiency of human body segmen- 
tation. When fewer model parameters are used, it is 
easier to  match the feature to the model, but more 
difficult to extract the feature. For example, the stick 
figure is the simplest way to represent a human body, 
and thus it is relatively easier to fit the extracted lines 
into the corresponding body segments. However, ex- 
tracting a stick figure from real images needs more 
care than searching for 2D b lob  or 3D volumes. 

3 Tracking Human Motion without 
Using Body Parts 

In the previous section, we discussed human motion 
analysis requiring the geometric identification of joint 
connected body parts. The task of pre-recognition and 
locating features such as joints and body segments is 
a difficult one. It is computationally more efficient to 
track or recognize moving humans by directly using 
uninterpreted low-level visual features. We will d i5  

cuss a number of methods that adopt such a strategy. 
The objective of tracking is to establish corm 

spondence of the image structure between consecutive 
frames based on features related to  position, velocity, 
shape, texture, and color. Typically, the tracking p n  
cess involvea matching between images using pixels, 
points, lines, and blobs, based on their motion, shape, 
and other visual information [2]. There are two general 
classee of correspondence models, namely “iconic mod- 
els” , which use correlation templates, and “structural 
models”, which use image features [2]. Iconic models 
are generally suitable for any objects, but only when 
the motion between two consecutive frames is small 
enough so that the object images in these frames are 
highly correlated. Because our interest is in tracking 
moving humans, which retain a certain degree of non- 
rigidity, our literature review is limited to the use of 
structure models. 

Featurebased tracking typically starts with feature 
extraction, followed by feature matching over a s e  
quence of images. The criteria for selecting a good fea- 
ture are its robustness to  noise, brightness, contrast, 
and size. To establish feature correspondence between 
successive frames, well-defined constraints are usually 
imposed to eliminate invalid matches and distinguish 
a unique correspondence. There is a trade-off between 
feature complexity and tracking efficiency. Lower-level 
features, such as points, are easier to extract but rela- 
tively more difficult to track than higher-level features 
such as lines, blobs, and polygons. 

We discuss the problem of tracking human motion 
in two scenarios - with a single camera setup and with 
a distributed-camera configuration. Under the first 
setup, images are taken from the view of a single cam- 
era, whereas the a distributed-camera tracking system 
uses several cameras fixed at various locations of the 
monitored area to capture images simultaneously. In 
both cases, various levels of features could be used to 
establish matching in successive frames. The major 
difference is that the features used for matching using 
images taken from multiple perspectives must project 
to the same spatial reference, while tracking using a 
single camera does not have this requirement. 

3.1 Single Camera Tracking 

Most methods for tracking moving humans use im- 
age sequences taken from a single camera. Features 
used for tracking are usually points and motion blobs. 
Polana and Nelson [37l observed that the movements 
of arms and legs converge to  that of the torso. In their 
work [37], each walking subject image was bounded by 
a rectangular box, and the centroid of the bounding 
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box was used as the feature to track. Positions of the 
center point in the previous frames were used to esti- 
mate the current position. Therefore, correct tracking 
was resolved even when the two subjects were occluded 
to each other in the middle of the image sequence. Cai 
et al. [lo] also focused on tracking the movements of 
the whole human body using a viewing syatem with 
2D translational movement. They focused on dynamic 
recovery of still or changing background images. The 
image motion of the viewing camera was estimated by 
matching the line segments of the background image. 
Then, motion-compensated frames were constructed 
to adjust three consecutive frames into the same spa- 
tial reference. In the final stage, subjects were tracked 
using the center of the bounding boxes and estimated 
motion information. Segen and Pingali’s [44] people 
tracking system utilized the comer points of moving 
contours as the features for correspondence. These 
feature points were matched in forward and backward 
orders between two successive frames using a distance 
measure related to position and curvature values of the 
points. The matching process implies that a certain 
degree of rigidity of the moving human body and small 
motion between consecutive frames was assumed. Fi- 
nally, short-lived or partially overlapped trajectories 
were merged into long-lived paths. 

Another commonly used feature for tracking is 2D 
blobs or meshes. In Okawa and Hanatani’s work [34], 
background pixels were voted as the most frequent 
value during the image sequence [45]. The meshes 
belong to  a moving foot were then detected by in- 
corporating low-pass filtering and masking. Finally, 
the distance between the human foot and the view- 
ing camera was computed by comparing the relative 
foot position to the precalibrated CAD floor model. 
Rossi and Bmzoli [42] also used moving blobs to track 
and count people crossing the field of view of a ver- 
tically mounted camera. Occlusion of multiple s u b  
jects was avoided due to the viewing angle of the cam- 
era, and tracking was performed using position eati- 
mation during the period when the subject enters the 
top and the bottom of the image. Intille and Bobick 
[20] solved their tracking problem by taking advan- 
tage of the knowledge of a so called “closed-world”. 
A “closed-world“ is a spacetime domain where the 
knowledge of all possible objects present in the image 
sequences are available. They illustrated their track- 
ing algorithm using the example of a football game, 
where the background and the rules for play are known 
a priori. Camera motion was removed by establish- 
ing homographic transforms between the football field 
model and its model using landmarks in the field. The 

players were detected as moving blobs, and tracking 
was performed by template matching the neighbor re- 
gion of the player image between consecutive frames. 
Pentland et al. [49, 51 explored the blob feature thor- 
oughly. In their work, blobs were not restricted to re- 
gions due to motion, and could be any homogeneous 
areas, such as color, texture, brightness, motion, shad- 
ing, or a combination of these. Statistics such as mean 
and covariance were used to model the blob features 
in both 2D and 3D. In [49], the feature vector of a 
blob is formulated as (z, y, Y, U, V), consisting of a 
spatial (3, y) and color (Y, U, V) information. A hu- 
man body is constructed by blobs representing various 
body parts such as head, torso, hands, and feet. Mean- 
while, the surrounding scene is modeled = a texture 
surface. Gaussian distributions were assumed for both 
models of human body and background scene. Fi- 
nally, pixels belong to the human body were assigned 
to different body part blobs using the log-likelihood 
measure. Later, Azarbayejani and Pentland [5] recov- 
ered the 3D geometry of the blobs from a pair of 2D 
blob features via nonlinear modeling and recursive es- 
timation. The 3D geometry included the shape and 
the orientation of the 3D blobs along with the rela- 
tive rotation and translation to the binocular camera. 
Tracking of the 2D blobs was inherent in the recovery 
process, which iteratively searched the equilibria of the 
nonlinear state space model across image sequences. 

3.2 Multiple Camera Tracking 

As stated above, most previous tracking method- 
ologies have been limited to a single camera config- 
uration. The disadvantage of using only one camera 
is that the area captured by the camera is relatively 
narrow due to the limited field of view of one single 
camera. To enlarge the monitored area, one strategy 
is to mount multiple cameras at various locations of 
the area of interest, so that if the subject disappears 
from the field of view of one camera, it will appear in 
the view of another camera in the system. A multi- 
ple camera setup also helps to solve the ambiguity of 
matching when subject images are occluded to each 
other. Only in very recent years has work on tracking 
of human motion from multiple perspectives emerged 
[43, 22, 27, 91. Compared to the problem of track- 
ing moving humans from a single camera, establish- 
ing feature correspondence between images captured 
at different locations is more challenging because the 
features are recorded in different spatial coordinates. 
All features to be tracked must be adjusted to  the 
same spatial reference before matching is performed. 
Recent work by Cai and Aggarwal [9] uses multiple 
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points belonging to  the medial axis of the human u p  
per body as the feature to track. These points are 
sparsely sampled and assumed to be independent of 
each other, which preservea a certain degree of non- 
rigidity of the human body. Location and average in- 
tensity of the feature points are integrated to  find the 
most likely mat& between two consecutive frames im- 
aged from different viewing angles. One feature point 
is assumed to match to  its corresponding epipolar line 
via motion estimation and precalibration of the cam- 
eras. Multivariate Gaussian distributions are assumed 
for the claseconditional probability density function 
of features of candidate subject images. Experimental 
results of tracking moving humans in indoor environ- 
ments using a prototype system equipped with three 
cameras indicated robust performance and a potential 
for real time implementation. Sat0 et d. [43], on the 
other hand, treated a moving human as a combina- 
tion of variou~ blobs of its body parts. All distributed 
cameras are calibrated in the world coordinate sys- 
tem, which correspond to a CAD model of the indoor 
environment. The blobs of body parts were matched 
over image sequences using their area, average bright- 
ness and rough 3D position in the world coordinates. 
The 3D position of a 2D blob was estimated based 
on height information by measuring the distance be- 
tween the center of gravity of the blob and the floor. 
These small blobs were then merged into an entire 
region of the human image using the spatial and mo- 
tion parameters from several frames. Kakadiaris and 
Metaxas [24] consider the problem of tracking humans 
using as inputs from three cameras to estimate 3D 
human motion. Kelly et al. 127, 221 adopt a similar 
strategy [43] to construct a 3D environmental model. 
They introduce a feature called voxels, which are sets 
of cubic volume elements containing information such 
as which object belongs to this pixel and the history of 
this object. The depth information of the voxel is also 
obtained using height estimation. Moving humans are 
tracked as a group of these voxels from the "best" 
angle of the viewing system. A significant amount of 
effort is made in [22, 271 to construct a friendly graph- 
ical interface for browsing multiple images sequences 
of a same event. 

4 Human Activity Recognition 

In this section, we review work on recognizing hu- 
man activities from image sequences. Usually, human 
action recognition is based on successfully tracking the 
human through images sequences, and thus is consid- 
ered to be a higher level task. A large body of liter- 

ature is devoted to human facial motion recognition 
and emotion detection, which fall into the category of 
elastic non-rigid motion. In this paper, we are only 
interested in motion involving a human body, i.e., hu- 
man body motion as a form of articulated motion. 
The difference between articulated motion and elastic 
motion is well addressed in [l]. There also exists a 
certain amount of work on human image recognition 
by applying geometric features, such as 2D clusters 
[45, 91, profile projects [29], texture and color infor- 
mation [14, 511. Since motion information was not 
incorporated in the recognition process, we exclude 
them from further discussion. 

For human activity or behavior recognition, most 
efforts have been concentrated on using statespace 
approaches [13] to understand the human motion se- 
quence [50, 15, 8, ll, 461. Another approach is to 
use the template matching technique [37, 71 to com- 
pare the feature extracted from the given image se- 
quence to the prestored patterns during the recog- 
nition process. The advantage of using the template 
matching technique is its inexpensive computational 
cost; however, it is relatively sensitive to the variance 
of the movement duration. Approaches using state- 
space models, on the other hand, define each static 
posture as a state. These states are connected by cer- 
tain probabilities. Any motion sequence as a compo- 
sition of these static poses is considered a tour going 
through various states. Joint probabilities are com- 
puted through t h a e  tours, and the maximum value 
is selected as the criterion for classification of activi- 
ties. Under such a scenario, duration of motion is no 
longer an issue because each state can repeatedly visit 
itself. However, approaches using these methods usu- 
ally need intrinsic nonlinear models and do not have 
closed-form solutions. As we know, nonlinear mod- 
eling also requires searching for a global optimum in 
the training process, which requires complex comput- 
ing iterations. Meanwhile, selecting the proper num- 
ber of states and dimension of the feature vector to 
avoid "underfitting" or "overfitting" remains an issue. 
In the following subsections, template matching and 
state-space approaches [13] will be discussed. 

4.1 Approaches using Template Matching 

We start with approaches which use template 
matching. So fax, the feature used for recognition 
in this category has been 2D meshes. Based on suc- 
cessfully tracking a moving human image from image 
sequences, Polana and Nelson [37j compute the op- 
tical flow fields [18] between consecutive frames and 
divide each flpw frame into a spatial grid in both X 
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and Y directions. The motion magnitude in each cell 
is summed, forming a high dimensional feature vec- 
tor used for recognition. To normalize the duration 
of the movement, they assume that human motion is 
periodic and divide the entire sequence into a number 
of cyclea of the activity. Motion in a single cycle is 
averaged throughout the number of cyclea and differ- 
entiated into it fixed number of temporal divisions. Fi- 
nally, activity recognition is processed using the near- 
est neighbor algorithm. Recent work by Bobick and 
Davis [7] follows the same vein, but extracts the m e  
tion feature differently. They interpret human motion 
in an image sequence by using motion-energy images 
(MEI) and motion-history images (MHI). The motion 
images in a sequence are calculated via differencing be- 
tween successive frames and then thresholded into bi- 
nary values. These motion images are accumulated in 
time and form MEI, which are binary images contain- 
ing motion blobs. The ME1 are enhanced into MHI, 
where each pixel value is proportional to the dura- 
tion of motion at that position. Each action consists 
of MEIs and MHIs obtained from images sequences 
captured from various viewing angles. Moment-based 
features are extracted from MEIs and MHIs and em- 
ployed for recognition using template matching. 

4.2 State-Space Approaches 

State space models have been widely used to pre- 
dict, estimate, and detect signals over a large variety 
of applications. One representative model is perhaps 
the Hidden Markov Model (HMM), which is a proba- 
bilistic technique for the study of discrete times series. 
HMM has been very popular in speech recognition, 
but only recently has it been adopted for recognition 
of human motion sequences in computer vision [50]. 
Its model structure could be summarized as a hidden 
Markov chain and a finite set of output probability 
distributions [%I. The basic structure of an HMM 
is shown in Figure 8, where Si represents each state 
connected by probabilities to other states or its own, 
and y ( t )  is the observation derived from each state. 
The main tool in HMM is the Baum-Welch (forward- 
backward) algorithm for maximum likelihood estima- 
tion of the model parameters. Features to be recog- 
nized in each state vary from points and lines to 2D 
blobs. We will address past developments in this area 
according to  the complexity of the feature used for 
recognition. 

Bobick [SI and Campbell [ll] applied 2D or 3D 
Cartesian tracking data sensed by MLDs of body 
joints for activity recognition. To state more specif- 
ically, the trajectories of multiple part joints form a 

Figure 8: The basic structure of an Hidden Markov 
Model. 

high dimensional phase space, and this phase space 
or its subspace are employed as the feature to rec- 
ognize. Both of them are intended to transform the 
continuous motion into a set of discrete symbol rep- 
resentations. They apply the trajectories of the high 
dimensional phase space or its subspace as the feature 
for recognition. The feature vector in each frame in a 
motion sequence is portrayed as a point in the phase 
space, which belongs to a certain state. A typical ges- 
ture is defined as an order sequence of these states 
restricted by motion constraints. In Campbell [ll], 
the learning/training process is conducted by fitting 
the unique curve of a gesture into the subspace of the 
full phase space into low-order polynomials. Gesture 
recognition is based on the maximum value of the cor- 
relation between the predictor and the current motion. 
Bobick [B], on the other hand, applied the k-means al- 
gorithm to find the center for each cluster (or state) 
using the sample points of the trajectories. Classify- 
ing motion trajectories to a gesture was accomplished 
through dynamic programming. 

Goddard’s human movement recognition [15] fo- 
cused on the low limb segments of the human stick 
figure. 2D projections of the joints were directly used, 
without interpretation, as inputs, and features for 
recognition were encoded by coarse orientation and 
coarse angular speed of the line segments in the image 
plane. Although Goddard [15] did not directly apply 
HMM in his work for discrimination of human gaits, he 
also considered a movement as a composition of events 
linked by time intervals. Each event is independent of 
the movement. The links between these events are 
restrained by feature and temporal constraints. This 
type of structure is called a scenario, which is easily ex- 
tended by assembling scenarios into composite scenar- 
ios. Learning is done by training the parallel network 
mapped by a feature hierarchy. Matching real scene 
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kinematics to modeled movements involves visual mo- 
tion feature in the scene, a priori events matched to  
the scenario, and the temporal constraints on the s e  
quence and time intervals. 

Another commonly used feature for identifying hu- 
man movements or activities is 2D blobs, obtained 
from any homogeneous regions based on motion, color, 
texture, etc. The work by Yamato et al. [50] is per- 
haps the first one on recognition of human action in 
this category. Mesh features of binary moving human 
blobs are used as the low-level feature for learning and 
recognition. Learning was implemented by training 
the HMMs t o  generate symbol patterns for each class. 
Optimization of the model parameters is achieved us- 
ing the Baum-Welch algorithm. Finally, recognition is 
based on the output of the given image sequence us- 
ing forward calculation. They tested sequences with 
six tennis strokes and achieved recognition rates rang- 
ing from 70% to loo%, depending on the number of 
training patterns. Recent work by Starner and Pent- 
land [46] applied a similar method to recognition of 
American Sign Language. Instead of directly using 
the low-level mesh feature, they introduced the posi- 
tion of a hand blob, its angle of axis of least inertia, 
and eccentricity of its bounding ellipse in the feature 
vector. 

5 Conclusion 

We have given an overview of past developments in 
human motion analysis. Our discussion has focused on 
three major tasks: 1) motion analysis of the human 
body parts, 2) high-level tracking of human motion 
using a single or multiple cameras, and 3) recognition 
of human movements or activities based on success- 
fully tracking features over an image sequence. Motion 
analysis of the human body parts is essentially the 2D 
or 3D interpretation of the human body structure us- 
ing the motion of the body parts over image sequences, 
and involves low-level tasks such as body part segmen- 
tation, joint location and detection. Tracking human 
motion is a higher level task in which the parts of the 
human body are not explicitly identified, e.g., the hu- 
man body is considered &s a whole when establishing 
matches between consecutive frames. Tracking pro- 
cedures depend on whether the subject is imaged at 
one time instant by a single camera or from multiple 

ject from images taken from multiple perspectives at 
the same time instant requires that features be pro- 
jected into a common spatial reference. The task of 

perspectives using different cameras. Tracking a sub- 

recognizing human activity over image sequences as- 
sumes that feature tracking for recognition has been 
accomplished. Two typical approaches are addressed: 
those based on a statespace model and those based 
on template matching the given images to  a prestored 
pattern. Template matching is easy to implement, but 
sensitive to noise and the time interval of the move- 
ments. Statespace approaches, on the other hand, 
overcome these drawbacks but usually involve com- 
plex iterative computation. 

The key to successful execution of high-level tasks 
is to establish feature correspondence between con- 
secutive frames, which still remains a bottleneck in 
the whole processing. Typically, constraints on hu- 
man motion or human models are assumed in order to 
decrease the ambiguity during the matching process. 
However, these assumptions may not closely fit the 
real situation or may introduce other tractable issues, 
such as the difficulty in estimating model parameters 
given the real image data. Recognition of human mo- 
tion is just in its infancy, and there exists a trade-off 
between computational cost and motion duration ac- 
curacy for methodologies based on statespace models 
and template matching. New techniques are expected 
to improve the performance and, meanwhile, decrease 
the computational cost. 
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